SEQUENCHER°

Tutorial for Windows and Macintosh

Reference Sequence

© 2017 Gene Codes Corporation

Gene Codes Corporation 525 Avis Drive, Ann Arbor, MI 48108 USA 1.800.497.4939 (USA) +1.734.769.7249 (elsewhere) +1.734.769.7074 (fax) www.genecodes.com gcinfo@genecodes.com

Reference Sequence

Import and Configure Reference Sequence	3
Create a Project Template	4
Import and Organize your Data	5
Set Assembly Parameters and Assemble	6
Assemble to Reference by Name	9
Analyze Variations and Generate Reports	10
Primers and Primer Products	13

Reference Sequence

There are many cases where you might want to align your data to a Reference. In the **Sequencher** Tour Guide, we demonstrated how to use the Reference Sequence functionality in **Sequencher** to check a clone. In this case, we will align sequencing data from the HV1 and HV2 hyper variable regions of the human mitochondrial genome to the Cambridge Reference Sequence. This is a standard practice in forensic labs where mitochondrial sequence facilitates human identification.

The Reference is particularly useful for characterizing SNPs in aligned sequences. The Reference Sequence controls the base numbering and the orientation of the overall contig. By providing consistent base numbering, the Reference Sequence allows you to reference a SNP by a given base position without concern for the effect of upstream insertions or deletions. Unlike other sequences in a contig, the Reference Sequence does not contribute to the consensus calculation, and it is immune to edits in the consensus.

This tutorial does not describe all the features for mitochondrial analysis, so if you would like more information on **Sequencher's** capabilities for forensic or reference-comparison work, please follow this tutorial with the "Mitochondrial DNA Typing" tutorial.

IMPORT AND CONFIGURE REFERENCE SEQUENCE

The HV1 and HV2 regions of the mitochondrial genome lie adjacent to each other, but either side of the origin, base 1, of the genome. The numbering of the region of interest from 5' to 3' starts counting up from base position 16,024 until it reaches the end of the genome, 16,569. At this point the numbering starts again at 1. In **Sequencher**, you can create a Reference Sequence that mimics the numbering in the control region of the mitochondrial genome.

44444444444444444444444		6676767676767676767676767676767676767676
16,024	<u>í</u>	576 [°]

- Launch Sequencher.
- Choose New Project from the File menu to open a new, empty project.
- From the File menu, select Import > Sequences...
- Navigate to the Sequencher > Sample Data > Mitochondrial Sequences folder.
- Select the Cambridge Reference Sequence.
- Click **Open**.

You have now imported a sequence into your project. The bases match those of the **Cambridge Reference**, but the numbering does not.

 From the Sequence menu, choose the Reference Sequence command to give the Cambridge Reference reference properties. The **Reference Sequence** menu command acts as a toggle switch, enabling you to endow or remove Reference Sequence properties from a selected sequence. Note the "**R**" in the icon of this sequence and the prefix "**Ref**" displayed in the **Kind** column of the **Project Window**. These distinctions tell you that this sequence has the special properties associated with a Reference Sequence. These properties, which are demonstrated in this tutorial, include controlling the numbering of a contig, immunity to editing, ability to direct assembly, and special comparison features.

- Select Sequence > Set Circular Genome Size.
- Click on the Enable For This Fragment checkbox.

Circular Genome Size				
🗹 Enable For Thi	s Fragment			
16569	Base Pairs			
16569				
Cancel	ОК			

• Click **OK**.

You are now ready to modify the numbering of the **Cambridge Reference** so that it corresponds to the published sequence.

- Double-click on Cambridge_Reference sequence.
- Place your cursor on base position 1.
- From the Sequence menu, choose Set Base Number > As Base Number...
- Enter 16024 as the new base number for the selected position.
- Click **OK**.

Note that the numbering of this sequence now starts at 16024, goes up to 16569, and then restarts numbering again at position 1.

• Close the Cambridge_Reference window by clicking on its close box.

CREATE A PROJECT TEMPLATE

If you are using a Reference Sequence in one project, it is likely that you may need the same Reference Sequence in another project. You can save a project as a **Project Template**. The **Cambridge Reference** sequence is the basis for comparison in reporting mtDNA typing results, so it will be useful to save the sequence as we have just modified it as a template.

- From the File menu, choose Save Project As Template....
- Give the Project Template the name Cambridge Reference.

Save Proj	iect As Template
Template name:	
Cambridge Refere	nce.spf
	Cancel OK

• Click **OK**.

Until you delete the Project Template, you can access it through the **File > New Project From Template** command or from the **File > Import > From Template** command. In the **User Preference**, **New Project** pane, you can also make a Project Template the default template to open when starting a new project. This can save you time if you always start a project with the same Reference.

General	
Settings	
Auto-Save	
Confidence	
External Data	New Project
Label & Name	
Menu	💿 Use Blank Project
New Project	
Sound	Set Assembly Defaults
Display	
Chromatogram	Use Project Template
Contig Chromatogram	o ose i roject remplate
Contig	Cambridge Reference 🛊
Feature, Motif	Commente generation of the
Format Ruler	Open Templates Folder
Start-Stop	Open reinplaces Polder
Variance Table	
Input/Output	

IMPORT AND ORGANIZE YOUR DATA

- From the File menu, select Import and from the sub-menu, select Folder Of Sequences...
- Select the Sequencher/Sample Data/Mitochondrial Sequences/HV1 and HV2 folder.
- Click OK on Windows or Choose on Mac.

Sequencher will alert you that you are about to import 9 files.

• Click on the Import All Files in Folder button.

This will load nine SCF sequences. Note that the names of the sequences are selected. Each column of the **Project Window** describes specific details about the imported sequences such as size, quality, and kind. You can also modify the look of the **Project Window**.

• From the View menu, choose Project Window Columns > Label.

This removes the **Label** column from the **Project Window** until you execute this command again. You can also configure the **Project Window** columns to include the **Sample** names of your data. This imported data does not have a separate sample name, because, as you can see in the **Kind** column, it is based on SCF files. However, most ABI files do have a Sample Name.

Because of preprocessing by an upstream software program, the AutoSeq data that you imported does not require trimming. However, most sequencing reactions do. For more information on setting effective trim criteria, see the **Sequencher** "Tour Guide", "Trimming Sequence", and the "Quality Scores" tutorials.

SET ASSEMBLY PARAMETERS AND ASSEMBLE

The **Assembly Parameters** allow you to control the limits of your assembly. You can define the minimum % match and the minimum number of overlapping bases required to build a contig. There are also additional criteria that you can set to define how to optimize the placement of gaps and how to select and name your contigs. The default values for assembly will work under most circumstances, but read the "Assembly Strategies" tutorial for more information. The following will focus on the use of **ReAligner** and **Assemble by Name**.

- Click on the Assembly Parameters button.
- Check Use ReAligner, if it is not already checked, to optimize gap placement and check Prefer 3' Gap Placement to gather gaps to the right-most position.

Sequencher allows you to choose how you want to position gaps created by small inserts and double-called bases.

5' Preferred	Non-optimized	3' Preferred
a:ggate	a:ggate	agg:ate
a:ggate	agg:ate	agg:ate
a:ggate	ag:gate	agg:ate
agggate	agggate	agggate

• Click on the Name Settings... button in the bottom section on Assemble by Name.

This opens the dialog that allows you to separate the information contained in the names of your imported sequences into useful parts that **Sequencher** calls **Assembly Handles**. The sequences in the **Project Window** have two sets of information separated by a dash, so we will change the delimiter to a dash and use Handle 1 to name and select our contigs.

- Scroll down the list of delimiters and select the **Dash** name delimiter.
- Click on the Handle 1 Assembly Handle.

Assemble by Name Settings			
Name Delimiters			
('-' - Dash 🗘 Define			
Assembly Handles			
● 1: Handle1 ● 2: Handle2			
◯ 3: Handle3 ◯ 4: Handle4			
◯ 5: Handle5 ◯ 6: Handle6			
○ 7: Handle7			
Active Handle: 1 – Handle1			
Cancel OK			

- Click OK to close the Assemble by Name Settings dialog.
- Click OK to close the Assembly Parameters window and return to the Project Window.
- Select Assemble by Name from the Assembly Mode drop-down menu on the Project Window's button bar.

Notice that there is now a new column in the **Project Window**, **Handle**, and across from each of the imported sequences is the portion of the sequence name that is followed by a dash. Also note that the names of the buttons on the **Project Window** have changed to reflect the new status of the **Assembly Mode**. For more information on this feature, read the "Assemble by Name" tutorial.

- Select all of the sequences by dragging a box around them or choosing **Select All** from the **Select** menu.
- From the **Project Window**, click on the button **Auto Assemble by Name**.
- Review the Assembly Preview window and then click Assemble.

After Assembly, **Sequencher** will present an **Assembly Completed** dialog.

• Click on the **Details...** button.

Partial Assemblies		
Handle	ltems	Details
90	90[0005]	4 fragments
	90[0006]	5 fragments

The result of the assembly is two partial assemblies, which we expect. There is no overlap between the regions of HV1 and HV2 sequenced in this project.

- Click on the Close button to return to the Project Window.
- Open a Contig Editor by doubleclicking on the contig icon 90[0005].

In the **Overview** of the contig, you will notice two forward and two reverse sequences.

- Click on the **Bases** button.
- Select the first base in the consensus sequence.
- Click on the Show
 Chromatograms button to display all of the trace data involved in calling this consensus base position.
- From the Select menu, choose Next Ambiguous Base.

PI-JRI-06 Fragment base #73. Base 73 of 186 • T C G C C N G T A A T A T PO-JRI-09 Fragment base #70. Base 70 of 220 T C G C C T G T A A T A T T C G C C T G T A A T A T PO-JRI-07 Fragment base #66. Base 66 of 213 T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T T C G C C T G T A A T A T

90-JRI-14 Fragment base **#**73. Base 73 of 184

The first ambiguous base is at consensus position 73. Sequence 90-JRI-06, which is in

the reverse orientation, has an N at this position while the other sequences have a T. Also note the dark blue confidence shading of the equivalent base in the reverse orientation, sequence 90-JRI-14. This indicates that the quality score for this sequence is very low.

A look at the chromatogram data shows that there is a lot of "C" background noise in this region in the reverse sequences, but the forward sequences clearly support a "T" call.

- Keep your selection in the consensus line at base position 73 and type "T".
- With your cursor still in the consensus, press the space bar to again invoke the Select > Next Ambiguous Base command.

Sequencher alerts you that there are no more ambiguities in the data.

• Repeat the editing process with contig 90[0006].

These data have four forward sequences and one reverse sequence. In editing, one must be careful not to give too much credence to supporting data sequenced in the same orientation. When making the consensus call, it is best to use the one best forward and the one best reverse reactions. Typically, sequences repeated in the same orientation contain the same errors. Contig 90[0006] requires edits at positions 73, 85, and 141.

• Close both the Contig and the Chromatogram Editor windows.

Assemble to Reference by Name

The **To Reference by Name** command aligns all sample sequences to a single Reference, regardless of inconsistencies between the individual sequences. Because it is a many-to-one comparison instead of the normal many-to-many comparison, **Assemble to Reference** is much faster than the standard **Assemble Automatically** assembly option.

- Select all.
- Click on the To Reference by Name button.
- Click Assemble on the Assembly Preview window.
- Click Close after reading the Assembly Completed dialog.

After assembly you should have only two items in your **Project Window**, the **Cambridge_Reference**, because it is not consumed in the assembly, and the contig 90. The complete contig is named with the **Assembly Handle** alone. The distinguishing suffixes, 0005 and 0006, are no longer needed.

<u>90-JRI-04</u> 90-JRI-01 90-JRI-02 90-JRI-05			
	Cambridge_Reference		
90-JRI-03	90- 	JRI-09 JRI-07 D-JRI-06 D-JRI-14	
16,020 16,233	Diagram Key Image: The second secon	252 Bumps on fragments show motifs, hollow rectangles show features	576

• Double-click on the icon of contig **90**.

The **Overview** shows the layout of the contig relative to the Cambridge Reference sequence. Also note the numbering of the contig matches the numbering of the Reference Sequence and the information displayed in the coverage map ignores coverage contributed exclusively by the Reference.

• Click on the **Bases** button.

You can see that the Reference Sequence still has the **R** in the icon and a gray border surrounds the bases. You can move the Reference Sequence to the top or bottom of the contig by clicking on its name and dragging.

The Reference Sequence has several advantages. It allows you to focus on your region of interest and it provides a consistent framework on which you can describe your project. In addition, the Reference Sequence is unobtrusive. It does not contribute to the consensus and it protects you from making accidental changes to the Reference while editing in the consensus. Gaps in the Reference Sequence are given decimal numbers, thereby preserving the numbering of base positions.

• Close the **Contig Editor** window.

ANALYZE VARIATIONS AND GENERATE REPORTS

Since you have already edited the sample sequence, 90, you can now view a compact table of the genetic variations that characterize this individual.

- From the **Project Window**, select contig **90**.
- From the Sequence menu, choose Compare Bases To > Reference Sequence.
- In the bottom left corner of the **Variance Table**, click on the resize icon button to optimize the column width for the display of the full name of the sequences.

In effect, we are asking how each of the sequences in the contig compares to the Reference. The results are displayed in an interactive **Variance Table**.

The left hand side of the table shows that there are no differences between the contig 90 and the Reference Sequence in HV1.

Refere	nce	90-JRI-04	90-JRI-01	90-JRI-02	90-JRI-05	Total
73	Α	\geq	\geq	$>\sim$	\mathbb{A}	4
195	Т	$>\sim$	$>\sim$	$>\sim$	$>\sim$	4
+	Total	0	0	0	0	8

Scroll the table to the right to see that there are two well-supported differences to the Reference Sequence in the HV2 region, at reference base positions 73 and 195.

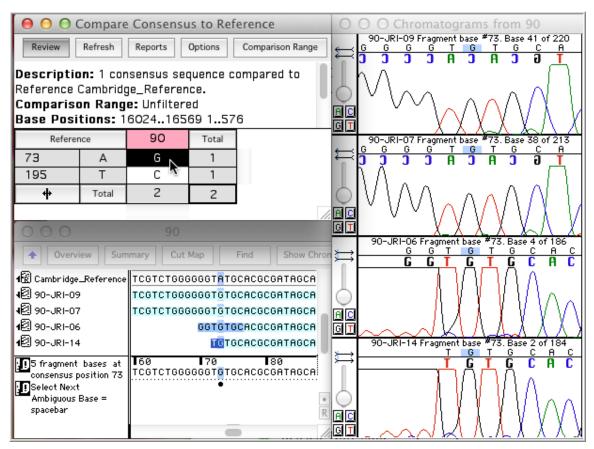
Refere	nce	90-JRI-03	90-JRI-09	90-JRI-07	90-JRI-06	90-JRI-14	Total
73	Α	\geq	G	G	G	G	4
195	Т	> <	С	С	С	С	4
+	Total	0	2	2	2	2	8

The quality of some of the data supporting a difference at base position 73 is weak, as noted by the darker blue shading.

• Double-click on the cell that reports a G at position 73 in sequence 90-JRI-14.

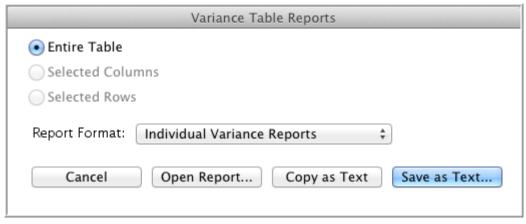
Sequencher opens the Contig and Chromatogram editors that support that base call. This is what the Variance Table looks like in Review mode.

- Use the left arrow key on your keyboard to navigate to each of the G calls at position 73.
- Close all of the windows when you are confident of the base calls reported as differences.


You can also view your data by just comparing the consensus to the Reference Sequence.

- In the **Project Window**, choose the command **Select > Select All**.
- From the Contig menu, choose the command Compare Consensus to Reference.

The **Variance Table** that you create now compares the consensus of all of your sequences to your Reference. Each cell in the table is linked to all of the data that support that consensus call.


• Double-click on the G at reference position 73.

This puts you in the Review mode, where you can see all of your data and you can also create a report of your results.

• Click on the **Reports** button at the top of the **Variance Table** window.

Change the format selection from Variance Table Report to Individual Variance Reports.

• Click on the **Save as Text...** button.

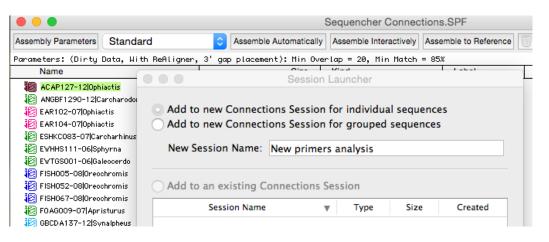
Note: The **Save/Save As** functions are not accessible when you are running a copy of **Sequencher's** Viewer version.

• Choose a location to store your difference report to and select **OK** on Windows or **Choose** on Mac.

The exported report looks like the following:

2 differences between Cambridge_Reference and 90 06/12/2012 12:49

Pos	Ref	Con	Required Edit
73	A	G	Change base
195	T	C	Change base


This tutorial provides generic information for the analysis of a sequence to a Reference. For more information, you can try the "Mitochondrial DNA Typing" tutorial, which focuses on specific tools built into the Forensic version of **Sequencher**. These tools help to further validate and report differences in mitochondrial sequence. You can learn more about tools for batch processing and automation by referencing other tutorials in this series as well as the User Manual.

- Close the project from the **File** menu by choosing the **Close Project** command.
- Save the project if desired.

PRIMERS AND PRIMER PRODUCTS

Normally, sequences get 'flipped' during the assembly process, but when you mark a sequence as a Reference Sequence, this has the effect of fixing its directionality. This means that when you analyse the sequence using Primer-BLAST and save the primers to your project, you can be certain that they will align in the correct orientation.

- Locate and open the Sequencher Connections project from the Sample Data folder.
- Select the sequence called ACAP127-12 | Ophiactis and choose Window > Add to Connections Session....
- Click the radio button adjacent to Add to new Connections Session for individual sequences and type a name for your new Session as shown in the image below.
- Click **OK**.

A new window opens consisting of two parts, a table in the top part and a series of tabs below that. (For more on **Sequencher Connections**, see the "Sequencher Connections" chapter in the Sequencher User Manual and the "Sequencher Connections" tutorial.) The table should contain one row for each sequence you selected.

- Right-click on the word Queued in the Primer-BLAST column for the ACAP127-12 | Ophiactis sequence and choose Run.
- The word Queued, which is the initial status, will change to Done. Your results are now ready to select and save in the Primer Picker tab.
- Click on the **Primer Picker** tab and then click in the checkboxes for the primer pairs you want to save.

View Text	KML Sequence Primer Picker		
	Primer pair 1		
	Sequence (5' to 3'): AAGAAAGAGGAGCCGGAACG	Begin: 138	End: 157
	Sequence (5' to 3'): ACAGTGGCATTCGGTCCATT	Begin: 335	End: 316
 Image: A start of the start of	Primer pair 2		
	Sequence (5' to 3'): GCTAGGAGCACCAGACATGG	Begin: 43	End: 62
	Sequence (5' to 3'): GGTCCATTGACATTCCGGGT	Begin: 323	End: 304

 Now click on the Save Selected button. Your primer pairs will be saved to your project. Each primer will be named ACAP127-12_Ophiactis for the parent sequence and then a number for the primer pair and finally an F or R for the direction of the primer.

ACAP127-12_Ophiactis_1F	20 BPs	DNA Fragment	-
ACAP127-12_Ophiactis_1R	20 BPs	DNA Fragment	-
ACAP127-12_Ophiactis_2F	20 BPs	DNA Fragment	-
ACAP127-12_Ophiactis_2R	20 BPs	DNA Fragment	-
🔯 ACAP127-12 Ophiactis	655 BPs	DNA Fragment	Brittle star
1075			

- Right-click on the **ACAP127-12 | Ophiactis** sequence in your **Sequencher** project and choose Reference Sequence. The icon of the sequence will contain an R.
- Select the newly created Reference Sequence and two matching primers, for example ACAP127-
 - 12_Ophiactis_1F and ACAP127-12_Ophiactis_1R.
- Click on the Assemble to Reference button in the button bar and open the newly created contig in the Bases view. Notice that the bases of the primers are colored (green represents a forward primer and red a reverse primer).

	consiglouri	
Overview Summary		
🔞 ACAP127-12 Ophiaotis	CROCARRABARABAGAGAGAGCGGBAACGGGTTTARCCGTTTTACCCCCCTCTTTCCCGBACCGCCCCCCCCCCCC	ACCGARTGCCACTGTTCGTCTG
絶 ACAP127-12lOphiactis 紀 ACAP127-12_Ophiactis_1 紀 ACAP127-12_Ophiactis_1	r Connecconnensen and Connecconnect and Connecconnect and Connect and Connecconnect and Connecconnect and Connect	ACCORATOCCACTOT
2	38 1148 1158 1169 1179 1180 1240 1210 1220 1220 1220 1220 1220 1270 1200 1270 1200 1270 1200 120	320 338 ACCGRATGCCACTGT::::::
	RCAP127-12_Ophiactis_1F RCAP127	-12_Ophiactis_18
	SKRKRSRHOLHRLPSFRYCRPRRRISRSSHFLFYPSHSILHHOLVKLHHDSLKHASTRHVHO	PNATVRL

- Choose Contig > Create New Seq from Consensus..., ensure that Include Features is checked, and click on OK.
- Open the newly created consensus sequence by double-clicking on its icon. Notice that there are two colored stretches of sequence green and red, these are the locations of the primers.
- Quit/Exit out of Sequencher if desired, saving your project if desired.